
James Janisse, VP

World Class Software Delivery Program

Driving SAFe

Agenda

• Our Situation in 2012

• Our Transition to SAFe

• Experience and results

– The Good

– The Bad

– The Ugly

2

TomTom @ a Glance

• Founded in Amsterdam in 1991

• 1 billion euros annual revenue

• 4,000 employees in 35 countries worldwide

• Maps cover 112 countries

• Real-time traffic in 32 countries

• 70 million PNDs sold since 2004

• 3 million in dash navigation systems sold since
2009

• 1-2 Million lines/code per navigation product

• 750-1000 engineers in 11 development sites

TomTom January 2012

• Organised as waterfall projects

• Many projects working in all parts of the code with

minimal module or component ownership

• Many releases are months-quarters late

• Multiple code lines and branches

• Negligible automated testing & no continuous

integration

• “downstream” teams spend 3,4,5 months accepting the

code and often changing it

• Poor visibility and facts based decision making

07/03/2016 4

Conclusions

• Waterfall and staged gate milestones are not
working for us

• Project orientation is wrong

• Branching the code is evil

• Complexity is too high

• Waste

• Insufficient information to make effective decisions

Strategy
• Transform from one-time project orientation to

component-based continuous integration and
delivery

7 March 2016 5

Agenda

• Our Situation in 2012

• Our Transition to SAFe

6

We First Invented Our Own Solution: Feature Flow

7 March 2016
7

Then We Made a Discovery

8

Then We Made a Discovery

9

Adoption Timeline

1. Book arrives on-site and is a read by a few Agilistas

2. Replace homegrown Feature Flow with SAFe

3. Give Book to SVP who reads it cover to cover on his

vacation

4. SVP buys book for CTO and other SVPs

5. Attend SAFE Training

6. Trained 50 Certified Scrum Masters & 50 CPOs

7. Re-org

07/03/2016 10

We Re-organised from Scrum Teams up

1. Key assumption is value is only created by scrum teams

2. Organise into Product clusters and component scrum teams

– One Agile Release Train per Product

– Every active/viable module/component is allocated to one and only one scrum

team

3. Adjust/supplement all scrum teams to have scrum master, developers, etc

4. Everyone not in a scrum team is put in a backlog i.e. Project Managers,

Resource Managers, Team leads….

5. Design a thin/lean program support team to feed the scrum teams: Product

Owner, Architect, Systems Team

6. Design a thin/lean portfolio team

07/03/2016 11

6 Months Into the Transition a New Goal

Launch the 4th Generation of our Consumer navigation

product

– You have 126 Days till launch

• usually 1 year project

– Bring in teams from 2 other (waterfall) Product Units

and work as one integrated team

07/03/2016 12

Doubled Number of Agile Release Trains

13

S11
Dec 7

S10
Nov 16

S09
Oct 26

S08
Oct 05

S15
Mar 08

S14
Feb 15

S13
Jan 25

S12
Jan 04

S16

Mar

29

S20
Dec 14

S19
Nov 23

S18
Oct 26

S17
Oct 05

S24

Mar

15

S23

Feb

23

S22
Jan 25

S21
Jan

04

S25

Apr

05

Baikonur Dec 7th Cape Canaveral Mar 8th

Ingstad Feb 1st

S26

Apr

26

Da Gama May 3rd

S16
Sep 14

Vancouver Nov 2nd

S10
Dec 14

S09
Nov 23

S08
Nov 02

S07
Oct 12

S14
Mar 08

S13
Feb 15

S12
Jan 25

S11
Jan

04

S15

Mar

29

Lecce* Dec 14th Gomera* Mar 8th

S26

Apr

26

NavUI

NavKit

Panda

S08
Dec 7

S07
Nov 09

S06
Oct 26

S05
Oct 05

S12
Mar 08

S11
Feb 15

S10
Jan 25

S09
Jan 04

S13

Mar

29
Estrella

S09
Nov 22

S08
Nov 01

S10
Dec 14

Nav4 Core S14
Mar 08

S13
Feb 15

S12
Jan 25

S11
Jan

04

S15

Mar

29

S26

Apr

26

• 4 Scrum teams

• 2 locations

• 5 Scrum teams

• 2 locations

• 5 Scrum teams

• 3 locations

• 14 Scrum teams

• 4 locations

All New TomTom GO500

EU 45 Countries

Lifetime Traffic

RRP: £199.99

07/03/2
016

14

“There is no doubt in my mind that

without SAFe and Rally we would not

have launched this in only 140 days.

It is also our best new product ever”

2014 to Present

• SAFe is adopted by all large product teams

– Approximately 750 FTEs

• Navigation software

• Online services

• Map creation software

• Sports software

– 515 users of CA Agile (Rally)

– 200+? people trained in SAFe

15

Agenda

• Our Situation in 2012

• Our Transition to SAFe

• Experience and results

16

Agile in Automotive, Stuttgart, November 2015

17

Getting requirements

100% correct up front

Agile in Automotive, Stuttgart, November 2015

18

Question

What are the differences between…

19

Delivering value via projects Delivering value via continuous

integration & delivery

and

Flow

2012

• Batch size = 1

• Work is organized by stages:

Plan > Analyse > Develop > Test

• Risk remains till end

• Value only delivered at end

Now

• Uncouple required features to flow

independently and as fast as

possible

• High risk & high value working first

• Release value in pieces ASAP

20

The Principles of Product Development Flow

Donald Reinertsen

Organisation

2012

• Bring people to the requirements

• Overhead of “Resource
Managers”

• New team has no history of
working together

• Throughput is unknown

• Impact of schedule risk

Now

• Bring requirements to the team(s)

• Minimal overhead

• Proven historical velocity

• Established way of working

• Clear long term ownership

• Self managing teams

• Team not managers commit

21

Requirements

2012

• Assumes that we, or our

customers, can fully understand all

the requirements up front

• Change is discouraged

• One chance to be “perfect”

• One chance so ask for everything

• Does not work for high user

experience scenarios, where you

need to see it working first

• Discourages innovation

Now

• Add features and fine tune

performance over time

• Fail fast, learn, improve

• assume that change will be

constant, and we deliver in small

increments to better track change

• Fine tunes and improves the user

experience

• Reach minimum marketable

product faster & with less waste

22

Architecture

2012

• Big Up Front Design (BUFD)

• Cannot spend months and months

designing a future proof perfect

architecture

• Often based on many untested

assumptions and hypothesis

Now

• Architectural vision & emerging

runway

• Better to have a vision and “barely

sufficient” architecture

• Test assumptions & hypothesis

ASAP

• Change is constant so

architectural runway is built just in

time to prevent waste

• The need to refactor is not failure

23

Performance KPIs

2012

• On-time

• On-budget

• Code Maturity

• Timesheets & estimate to
complete

• Never ask if project X is an
improvement over Project Y

• Mostly time accounting focus

• Time spent does not easily equate
to business value delivered

Now

• Measure actual value delivered

• Cycle time trend

• Velocity trend

• Sprint and Release Burndown

• Focus is on trends and continuous

improvement

• No more timesheets

24

Demo

2012

• Runs near the end of the project

• Hope for a miracle near the end of
the project

• Very little opportunity to improve or
re-factor

• Cost to change behavior is high

Now

• System always runs

• Demo production ready, tested
software every 2-3 weeks

• Release to beta testers every 2-3
weeks if not daily

• Opportunity to verify designs, make
improvements or move on

25

Code

2012

• Branched for each project

• Ownership unclear

• Significant waste and overhead

• Effort to merge code back in was

around 20% of total effort

• Single defect may have to get fixed

in each branch

• Projects often break features

• Developers did not have to

maintain their code

Now

• Only one mainline

• Ownership 100% clear

• Negligible refactoring or waste

• Each product variant is built from

the same code line so it benefits

from the entire install base

• Developers maintain their own

code and control tech debt

26

Integration

2012

• Infrequent & near the end

• effort to schedule integrations

• significant effort to conduct

integration months after branching

• Each integration would trigger

significant corrective actions

• Catching up could take 20% of the

total effort

Now

• Continuous and ongoing

• Each developer submits their code

several times/day

• Each submission requires success

test automation results

• Whoever breaks it fixes it without

delay

• Daily full regression suite

• Daily integration with downstream

systems

27

Test Automation & Continuous Integration

28

Summary of “The Good”

29

Observation Impact

Always release on fixed

schedule

• Reliable and predictable releases of production code

• Establishes fixed rhythm

Release quicker and

more often

• Fail fast (<2 weeks) is better than after 6 months

• Validate and adapt sooner

• Adapt to change/learnings

Run automated tests

suite per submission &

per day

• Detect/prevent issues with each new submission

• Mainline is always able to run

• No bottleneck at the end

• Reduces waste as others stay up to date

Single shared backlog

available to all to view

• Improved transparency and info sharing

• Done means working capability not task complete

Perpetual teams • Teams establish ways of working & esprit du corps

• Improves estimating by allowing historical comparisons

• Enables estimation accuracy analysis

• Team controls their own commitments

• Sustainable development

Agile in Automotive

Summary of the “Bad”

Observation Impact

Teaches the business that

Agile = 100% predictable

• What happened to iterative development

• What happened to incremental development

Enables the business to

change direction/ strategy/

priorities often

• Let’s face it, too much Agility is just an inability to make

choices and decisions i.e. chaos

Everyone can see everyone’s

backlog, priority, throughput…

• Everyone can second guess your prioritisation

• Everyone can second guess your estimates

Shows week teams • Teams that normally staid below the radar which no one

new what they did are suddenly very exposed to the

daylight

Goes on forever without a

break (HIP downtime)

• Projects used to have a nice slow start up and shut down

phase, so cyclical rhythm

• Now work is harder and does not let up

Agile in Automotive 30

Summary of the “Ugly”

Observation Impact

Some teams will resist • Reject the need to be part of an ART

• Reject the need to have common ways of working…

Some people loose

power

• Project managers loose scope, resourcing, and budget

• Resource managers are no longer needed

Centralised decision

making shifts to

decentralised

• Evolving decisions to the lowest level threatens central

portfolio level experts like architects and makes guiding

independent teams hard

Fully defined

transforms to barely

sufficient

• Architects still love to make future proof architectural

designs and plans

• UX want to make pixel perfect designs for all use cases

Agile in Automotive 31

Thank You

Any questions?

http://nl.linkedin.com/in/jamesjanisse

32

http://nl.linkedin.com/in/jamesjanisse

